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The approximation of the truncation and accumulated errors in the numerical solution of a 
linear initial-valued partial differential equation problem can be established by using a semi- 
discretized scheme. This error approximation is observed as a lower bound to the errors of a 
finite difference scheme. By introducing a modified von Neumann solution, this error 
approximation is applicable to problems with variable coefficients. To seek an in-depth 
understanding of this newly established error approximation, numerical experiments were 
performed to solve the hyperbolic equation 

au ^ 
-mg= -C,(x) c*wg> 

with both continuous and discontinuous initial conditions. We studied three cases: 
(1) C,(x) = C, and C,(t) = 1; (2) C,(x) = Co and C,(t) = t; and (3) C,(x) = 1 i (x/a)* and 
C,(t) = Co. Our results show that the errors are problem dependent and are functions of the 
propagating wave speed. This suggests a need to derive problem-oriented schemes rather than 
the equation-oriented schemes as is commonly done. Furthermore, in a wave-propagation 
problem, measurement of the error by the maximum norm is not particularly informative 
when the wave speed is incorrect. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

A difficulty in numerical solutions of a hyperbolic partial differential equation 
problem is the smearing of solution discontinuities [2, 3, 5, 14-16, 211. In the 
neighborhood of a discontinuity, the accuracy of the solution may not be improved 
by using higher order schemes, regardless of their increasing complexity [ 13 ]. 
particular, in solving a PDE problem with variable coefficients, even linear ones, 
the employment of a higher order scheme might be too complex to be practical. It 
is therefore often asked whether a higher order scheme should be employed or 
might an error approximation be possible prior to the employment of a scheme? 

Error bounds have been studied by many authors [17-191. As a result of 
Vichnevetsky’s work in the late seventies, it was suggested that the errors in the 
numerical solution of a problem might be problem dependent rather than equation 
dependent. He related the errors of a scheme not only to the given equations but 
also to the given initial conditions. He did not, however, pursue this finding. 
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formula is applicable only to linear hyperbolic equations with constant coefficients 
~231. 

Currently, the numerical results of several authors from solving more general 
problems than the one considered by Vichnevetsky appear to support the 
assumption that the errors are problem dependent [7, 181. Hence, we intend to 
establish an error estimate technique applicable to a more general class of problems 
than only linear hyperbolic equations with constant coefficients. 

We consider a linear initial-value PDE problem in one space variable [24] as in 
the problem; the given equation is 

where the differential operator % is 

2. = ; Gil(X) C,(t) g, 
i=O 

(1.1) 

(1.2) 

and the given initial condition U(x, 0) = U,( ) x is either continuous or piecewise 
continuous. 

It is well known that (1.1) is satisfied by the von Neumann solution 

U(x, t) = ii,(t) eiwx (1.3) 

in the frequency domain [25] if the coefficients Cil(x) in 2. are all constants. This 
leads to Vichnevetsky’s error approximation. However, (1.3) is not a solution of 
(1.1) if the coefficients are not all constants. We suggest the modification 

U(x, t) = L?,(t) c/d&) eiwx (1.4) 

where dw(x) is arbitrary and will be determined later. 
In the following sections, the modified von Neumann solution and the error 

approximation are described. To further understand this newly derived error 
approximation, the following linear hyperbolic problem is studied with both 
continuous and piecewise continuous initial conditions: 

au at = -C,(x) C,(t) g. (1.5) 

We considered three cases: (1) C,(x) = Co and C,(t)= 1; (2) C,(x) = Co and 
C,(t) = t; and (3) C,(x) = 1 + (x/a)’ and C,(t) = Co, where Co and a are constants. 
Our results support the assumption that the errors are problem dependent. This 
suggests that an appropriate scheme should be derived problem oriented rather 
than equation oriented as is commonly done. We observe that the error 
approximation forms a good lower bound to the errors encountered in a finite 
difference scheme. Futhermore, the errors are functions of the propagating speed. If 
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the speed of the wave varies with its position, then a wave distortion occurs, and tbe 
numerical wave is not propagating along the path of the exact wave. After a time 
period, an initial point will not travel to the same point by following the numerical 
or the exact wave. A delay (or an advance) of the numerical wave on the arrival at 
a fixed point relative to the exact wave raises doubt OR the meaning of co~vent~Qna~ 
pointwise error measurement technique. Trefethen [22] has also considered 
variable speed wave propagation problems, but from a very different point of view. 

II. TRUNCATION AND ACCUMULATED ERRORS 

In general, the von Neumann solution may not satisfy (1.1). Hence, we consider 
the modified von Neumann solution 

lJ(x, t) = ii,+(t) &(x) eiWX (1.4) 

where (6,(x) satisfies 

dlog 6,(t) = .F.[#W(x> eiwx] 
dt q5Jx) eiwx . 

As defined in (2.1), c$~(x) will exist if C,(t) in (1.2) are all connected by a relation 
of the form C,(t) = Cig(t) for some function g and for constants Gi. (This is 
indicated by the referee.) However, if 4,J.x) does exist, then a space transformation 
is possible, i.e., 

and the exact and numerical solutions of (Ll), U(x, t) and Uh(x,, t), respectively, 
may be found as 

U(x, t) =I” &,(O)$,Jx).exp (2.3) 
-02 

and 

where 

and 

(2.5) 

581/79/2-X 
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In (2.3) and (2.4), &JO) is the Fourier transform of U,,(x) in the transformed 
y-space. In (2.6), A”. is a finite difference operator defined also in the y-space and the 
numerical solution UJx,, t) satisfies 

dU,t(xm t) 
dt 

=A”. UJX,, t), 

Uh(Xm 0) = Uo(x,). 
(2.7) 

Details on the existence of ~Jx) may be found in Ref. [9]. 
Let Er(x,, t) and e(x,, t) be the truncation and acummulated errors at the mesh 

point x = x,, respectively. Then we have 

ET(X,, t)=E U(x,, t)-2. U(x,, t) (2.8) 

and 

4x*, 0 = w-n, t) - Uh(X”, 0 (2.9) 

By considering that U(x, t) is band-limited, i.e., its Fourier transform vanishes for 
/WI > n/h, where h is a constant [5,6,20], and by using the sampling theory and 
Whittaker’s theory [26], the truncation and accumulated errors in a wave 
propagation problem can be estimated as 

e*(x, t) = 1”” ii,(O) #Jx) eiwx 
- n/h 

{w(&fh OR) 

- exp dw (2.10) 

and 

E?(x, t) = j”” &(O) 4,(x) eiWX(A?(w, t) - B(w, t)} 
- z/h 

x exp (2.11) 

In (2.10) and (2.11), both B,(O) and a(w, t) are defined in the transformed y-space. 
However, this restriction may be removed as described in Ref. [9]. Furthermore, it 
can be shown that at the mesh point x=x,, 

e*(x,, t) = 4x,, t) (2.12) 

and 

E;(x,, t) = -Wx,, t). (2.13) 
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Hence, e*(x, t) and E,*(x, t) can be called the accumulated and truncation errors 
everywhere, respectively. 

III. THE PROBLEM 

We studied three wave propagation problems in the general form 

au 
at = --Cl(X) C,(f) g 

U(x, 0) = U,(x) is given, 

where the initial wave is either continuous or piecewise continuous. As described in 
(l.S), the initial wave U,(x) is propagating with a speed u = C,(x) Cz(~). In the 
study, the continuous wave is given to be a sinusoidal wave 

U;(x) = sin knx, -l<k<l, Of) 

and the discontinuous wave is 

G(x)= ; 
i 

x < 0, 
> x > 0. 

However, U:(x) is not band-limited, hence, the newly established error approxima- 
tion may not be applied. For this reason, we used the discrete Fourier series of 
U:(x) in the interval [ -N dx, N dx] instead, i.e., for an even N, 

2k+l 
cos 2N 7r . 2k+l 2k+l 

, 
2k+l sin-~n71+cos--nn 

N N 63) 

sm 2N = 
Ui(x,) is defined at the mesh point x = x,. It has a period of 2N Ax. Plence, in the 
wave propagation, a reflected wave occurs. To avoid the disturbance of the reflected 
wave near the discontinuity, N is taken to be a large number. This, however, causes 
an increase in computing time. This disadvantage may be reduced to a minimum 
with the application of the fast Fourier transform [12]. 

First Problem 

The first problem we considered is that C,(x) = C, and C,(t) = 1; hence, the 
initial wave is propagating with a constant speed u = C, [l] toward the right along 
the characteristic 

dx 
z- - co, (3.4) 
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which represents a family of straight lines. With the initial waves being U;(x) and 
U;(x), respectively, the propagating waves correspondingly are 

U(‘)(x, t) = sin[kn(x - Cot)] 
and 

cos=+ 
2N sin[Z$J7r(n--$$] 

, 2k+l 
slnZNn 

(3.6) 

Second Problem 
The second problem describes a wave propagating in a medium which is under 

constant pressure in the direction of propagation. We assume that C,(x) = CO and 
C2(t) = t; hence, the initial wave propagates with a variable speed v = CO t toward 
the right. At any time t = to the wave moves uniformly with the speed v = CO to; 
however, o changes from time to time. No distortion of the wave will occur, but in 
every fixed time interval, the traveling distance of the wave is different. The charac- 
teristic [ 111 is given as 

dx 
--&= Cot, (3.7) 

which represents a family of parabolas. Even though +,Jx) = 1 in this case, the von 
Neumann solution is 

U(x, tj=exp(iw(x-f$)) 

The propagating waves may be written as 

(3.8) 

(3.9) W’(x, t)=sin[krc(x-$f)] 

and 

U(3)(x,, t)=f+& N’y 
cos=rL 

n= -N/2 

2N sin[E$Jz(n--$f)] 
. 2k+l 

sm 2N n 

(3.10) 
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Third Problem 

This problem shows a wave propagation in a nonuniform medium and is chosen 
for the special properties of the wave as described below. We assume that 
C,(x) = 1 f (x/a)” and C,(t) = C,,. Hence, the wave is propagating with a spee 
u = C,( 1 + (x/a)*) toward the right along the characteristic 

Equation (3.11) represents a family of curves, 

tan-l (x-xob cot 
a2+xxo - La 

(3.11) 

(3.12) 

where x0 indicates the initial position. Each curve in this family is composed of 
many branches. However, in physical reality, a wave will not return after 
approaching infinity. Hence, the existence of the wave may not exceed the time 
period To = rca/2C, to be called the time threshold. Furthermore, since each point 
on the wavefront has a different speed, the wavefront undergoes a distortion. 

Bn this problem, 

dJX)=exp(rilo(tan-‘a-z)), 

and the exact solution are 

(3.13) 

N/2-1 

U3)(x,, t)=k+& c 

k= -N/2 

i 

2k+l 
+ cos 

-Kc 
(3.15) 
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IV. NUMERICAL RESULTS 

We employed live stable schemes to solve the described problems. Two of them 
are finite difference schemes and the others are semi-discretized finite difference 
schemes. The details on the schemes and the numerical solutions of the semi- 
discretized schemes can be found in Appendices 1 and 2. The performed experiments 
are described in Table I. In the table, the symbols, “Fi, i= 1,2” and “Si, i= 1,2, 3” 
represent the finite difference and semi-discretized schemes of order i, and “C” and 
“D” the continuous and discontinuous initial waves, respectively. The results of the 
experiments are shown in Figs. l-7. In the figures except Figs. 4 and 5, only the 
circled points represent the observed data and the lines drawn between the points 
are mainly used to connect the data points. 

Figure 1 shows the errors observed by employing schemes Fl and F2 ip the 
experiments of a continuous initial wave. In the figure, the two curves show several 
local maxima and minima. On the first curve, the error curve of the first order finite 
difference scheme, the minima occur at the points at which the second order 
derivative of the solution vanishes; however, on the second order scheme curve, the 
third order derivative vanishes. (Remark: the truncation errors of schemes t;l and 
F2 are proportional to the second and third order derivatives of the solution, 
respectively.) This suggests that the errors are problem dependent. Furthermore, at 
the points x= 0.50 and 1.50, the errors of the first order scheme are obviously 

TABLE I 

Mesh Time Wave Wave 
Experiment Problem Scheme size interval speed Duration type Figure 

1 1. Fl l/16 l/40 1.0 0.5 c land2 
2 1 R l/16 l/40 1.0 0.5 C 1 and 2 
3 1 Sl l/16 l/40 1.0 0.5 C 2 
4 1 s2 l/16 l/40 1.0 0.5 C 2 
5 1 s3 l/16 114 1.0 0.5 C 2 
6 2 Fl l/16 l/40 t 1.0 D 3 
7 2 R l/16 l/40 t 1.0 D 3 
8 2 Sl l/16 l/40 t 1.0 D 3 
9 3 1.0 0.5 C 4 

10 3 1+x* 0.5 C 4 
11 3 R l/16 l/80 1.0 0.5 C 5 
12 3 R l/16 l/80 1+x2 0.5 C 5 
13 1 Fl l/16 l/160 1.0 0.125 C 6 
14 1 Fl l/16 l/160 1.0 0.250 C 6 
15 1 Fl l/16 l/160 1.0 0.375 C 6 
16 1 R l/16 l/l60 1.0 0.125 C I 
17 1 R l/16 l/l60 1.0 0.250 C 7 
18 1 R l/16 l/160 1.0 0.375 C 7 
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FIRST ORDER FINITE 
DIFFERENCE SCHEME 

SECONDORDE 

FFERENCE SCHEM 

,055 0.0 0.5 1.0 1.5 2.0 x 

FIG. 1. The errors accumulated in a continuous wave propogation of constant speed by applying a 
first- and a second-order finite-difference scheme. As shown, in regions, the first-order scheme operates 
smaller errors than the second-order one. In the experiments, the wave speed c = 1.0, the mesh size 
h = l/16, the time period T= 0.5, after 20 time steps. The initial wave is given as u,(x) = sin(nx). 

smaller than those of the second order one. Hence, in certain regions, a lower order 
scheme may generate more accurate numerical solution than a higher order one. 
Figure 2 shows that the error approximations from $1 and 5’2 are indeed the lower 
bounds to the errors of the finite difference schemes 8’1 and F2, respectively. 
Figure 3 shows the data observed by employing the schemes Fl, F2, and Sl in the 
experiments of a’ discontinuous initial data which is represented in a discrete 
Fourier series with N= 32 as given in (3.3). As shown, near a discontinuity, the 
errors are independent of the order of the schemes used. However, the estimated 
error still serves as a lower bound to the finite difference schemes on the right-hand 
side of the propagating discontinuity. The explanation on the irregularity of the 
errors on the left-hand side of the discontinuity may be found from Ref. [S]. 

Figure 4 shows two initial sinusoidal waves after 40 time steps in a time period 
T = 0.5. The dotted wave is traveling with a constant speed u = 1.0 and the solid one 
with a variable speed z) = 1 +x2. As shown, the solid wave suffers distortion. At the 
left farther end, the solid wave oscillates rapidly, hence, that part of wave is 
omitted. As shown in Fig. 5, large error occurs in the region with large wave 
distortion. Due to the instability of the schemes, outside the interval ( - $j, $), the 
numerical wave may not be found. 

The occurrence of large errors may be explained. Consider two points, xy and x:, 
.$’ #x: on the initial wave. In a time period T, those points will travel either with 
the wave of constant speed C, to X: and xi or the one of variable speed C,( I + x”) 
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FIRST ORDER SEMI-DISCRETIZED 
FINITE DIFFERENCE SCHEME 

-4 

I 

SECOND ORDER SEMI-DISCRETIZED 
10 FINITE DIFFERENCE SCHEME 

s=s2 0 
‘.. . . .* .” 

.o. ., 
‘0, ,... .X‘ “0. _. + .o’ 

,051 , , , , ~ 
0.0 0.5 1.0 1.5 2.0 x 

FIG. 2. The error approximations of the semi-discretized schemes were observed as lower bounds to 
the errors of finite-difference schemes in a continuous wave propagation. The parameters used in the 
experiments are the same as used in Fig. 1. The data points at the locations marked by x are deleted to 
make the point. 

FINITE DIFFERENCE SCHEME 

joe , 
FIRST ORDER SEMI-DISCRETIZED \ ‘o 

“:“;;SCH; >) 

x - PROPAGATING DISCONTINUITY 

0.0 0.125 0.250 0.375 0.500 0.625 0.750 x 

FIG. 3. The errors near the discontinuity are independent of the order of the employed schemes. 
However, the error approximations are still observed as lower bounds of the errors of the tinite- 
difference scheme. In this case, the wave is propagating with a variable speed u = t. The initial wave is in 
the form of a discrete Fourier transform with N = 32 as given in (3.3). o --- 0, S= F2; 0 . . 0, L?= Fl; 
0-o. S=Sl. 



ERRORS IN WAVE PROPAGATION 363 

2. THE EXACT SINUSOIDAL WAVE 
WITH A SPEED v = I+ x2 
AFTER 40 TIME STEPS. 

FIG. 4. The distortion of an initial sinusoidal wave with the propagation speed being a function of 
the space. D,(x) = sin((n/2)x), T= 0.5. 

THEEXACTAND A lETI SECOND ORDER FINITE 
NUMERICAL WAVES DIFFERENCE SCHEME 
ARE NOT SYNCHRONIZED 40 TIME STEPS,T = 0.5 

(1) Constant speed v = 1.0 

(2) variable speed v = 1 +X 2 

-10-2 

4: 

-1o-3 0 

0 

, ,* , , , 
?-- 

-510 -3/a -118 0 110 318 518 

FIG. 5. The error distribution of a continuous wave propagation after 40 time steps. (1) Shows the 
error on the numerical wave as the initial wave is propagating with a constant speed, and (2) with a 
variable speed being a function of the space. In this case, the error is proportional to the third-order 
derivation of the solution. At * the third derivative of u(x, t) vanishes, hence, the error is small. The 
initial wave is the same as in Fig. 4. 
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to XT and xi, respectively. Let d, and d2 be the distances xi and xi, and XT and xz, 
respectively. Then literally, 

d, = Ix: - x$ (4.1) 

and 

d2= ( 4 
set* Co T 

- 4 )(I.-xytanC,T)(l-x:tan&T) ’ (4.2) 

For arbitrary xy, x4, C,, and T, dl # d2, and the wave of variable speed suffers a 
distortion. 

Consider again the traveling paths of the numerical and the exact waves. Assume 
that the initial point x7 is traveling with the numerical wave. Hence, in a time inter- 
val At, xy will move along a straight line 

$ = C,[ 1 + (x:)*-j (4.3) 

with a constant speed s,,, = C,[ 1 + (xy)‘] to x ;“. Its traveling distance in At is 

Adf’ = sN At = C, At[ 1 + (x:)~]. (4.4) 

In general, let xTj be the location of xy traveling with the numerical wave at the 
time t = tj, where x;“,, = xy . Th en in the time period T= J At, xy moves to xrJ, and 

J-l 

di” = ixfJ - x:I = c C,, At(1 + (x:~)~) , (4.5) 
j=O 

with 
N x~~=x,,~+~ + Co At(1 + (xtj_$). (4.6) 

By using (2.2), we have 

y=tan-’ x-tan-ix0 1, (4.7) 

and in the y-space, the discretization is equally spaced, i.e., 

Yo = Yce) = 0 

and 
vj =jh = tan-‘xTj - tan-’ x0 1, 

where h is a constant. Substituting (4.8) into (4.5), we have 

(4.8) 

(4.9) 
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However, in the same time period, if x7 is following the exact wave with a speed 
s = C,( 1 + x2), then xy will move a distance df to x:, i.e., 

and 

tan CoT<Lo. 
Xl 

Equations (4.9) and (4.10) give the ratio R = d;Yldf, and 

(4.12) 

In (4.12), for fixed Co, T, xy, and J, R varies with the mesh size h. (Remark: the 
mesh size h can never be zero because the computer is a finite machine.) Hence, in 
T, the point xy will arrive at different points by following the exact and the 
numerical waves. In this case, a pointwise error measurement is measuring not only 
the accumulated error from the application of the numerical method, but also the 

At = 11160 

-4 
10 

‘0.1 
P 

1.0 10.0 

COtLOG SCALE) 

FIG. 6. The truncation error of a first-order finite-difference scheme is proportional to the square of 
the wave speed. 
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traveling difference between the numerical and exact waves. For fixed C,, T, and 
xy, this traveling difference increases with increasing time steps J and mesh size h. 

We also observed the accumulated errors of the finite-difference schemes being 
functions of the wave speed. In both Figs. 6 and 7, the errors are measured at a 
fixed point on the propagating continuous wavefront after 20, 40, and 60 time steps. 
Figure 6 shows the data observed from Fl and initially, the fixed point x0 satisfies 
the relationship sin(n/2) x0 = j-. Correspondingly, 

and 

where CI~ and a2 are independent of At. Since the errors are measured at a fixed 
point on the wavefront, the derivatives a2U/dx2 and d3U/dx3 may be considered as 
constants at the measured points. This gives 

-6 
10 

ET(xO)- Co [ (z12- C$nt3 

At = 11160 

T= 0.375 

T= 0.25 

T= 0.125 

lo.1 
b 

1.0 10.0 

Co (LOG SCALE) 

FIG. 7. The truncation error of a second-order finite-difference scheme is a function of the wave 
speed. 
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log IETI(x,)I = 2 log 1 Co1 + constant (4.15) 

and 

log l&,(x,)/ =logIC,l i-log iCi-($)‘i +constant ( 

Equation (4.15) represents a set of straight lines with a slope 2, and Eq. (4.16) a set 
of curves whose slopes are closer to 1 as C, is small and increases to 3 as Co 
increases. The curves in both Figs. 6 and 7 have these slopes 

VIII. CONCLUSION 

The established error approximations are observed as lower bounds to the errors 
of finite difference schemes. More importantly, they relate the errors to both the 
equations and the conditions of a problem; hence, they may be used as tools to 
derive problem-oriented schemes. We are now looking into the derivation of such 
schemes. 

The applications of the error approximation are not as limited as they appear to 
be. The computations are also not as hard and expansive as imagined. The 
assumption that the solution of the problem is band limited will be satisfied by the 
discrete Fourier series of a function. In a finite interval, the discrete Fourier series of 
a continuous or a piecewise continuous function is always possible. Furthermore, 
the Fourier series of the sine or the cosine function is simple; hence, the evaluation 
of the error approximation is really easy. Nevertheless, the technique of fast Fourier 
transform [lo] could further reduce the computation cost. Hence, this approach is 
worthy of exploration. 

0ur observations suggest that the errors of finite difference schemes are functions 
of the wave speed and that in certain regions, a lower order scheme may generate a 
more accurate numerical solution. This suggests the need to solve wave propagation 
problems by using more than one scheme in parallel. In a multischeme eom- 
putation, the numerical solution forms a network. If a numerical switch is possible 
at every node of this network, then a mixed solution will be more accurate. 

An important consequence of this study is that the traveling paths of the 
numerical and the exact waves are different. If the propagating speed of a wave 
varies with position, then a point on the exact wave will travel along a curve, but 
on the numerical wave straight lines, which are tangent lines to the path of the 
exact wave. Hence, a delay (or an advance) of the numerical wave to arrive at a 
fixed point relative to the exact wave will occur. This puts doubt in the conven- 
tional pointwise error measurement technique. Hence, there is a need to define a 
new error measurement technique to replace the existing pointwise measurement. 
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APPENDIX 1. THE FINITE DIFFERENCE SCHEMES 

1. Constant Speed: s= CO 

(a) First order: 

ui+l= Ui,(l-2C2,P)f ui,,, n (,,,~a)+(,a~+~a) uj,-,, 

where II = At/Ax. 
The stability region is 

c(J<t. 

(b) Second order: 

u~+1=uj,(l-c~i2)+u~+~~~(c~~2-c~lz)+uj,~1.~(c~~2+co~). n 
The stability region is 

CJ < 1. 

(A1.2) 

(A1.3) 

(A1.4) 

2. Function of time: s = CO C,( t) 

(a) First order: 

u;+‘=Uj,[1-2C;~2C;(tj)]+ Uj,,, 
1 

C;L’C;(t,),y C?(r,)+%At )I 
+ uj,- 1 [ c~a2c:(tj) + y ( C,(tj)+zAt * >I (A1.5) 

The stability r_egion is 

Cd G W . oT,a:T I C2tt)l ). (A1.6) 
. . 

(b) Second order: 

[ ( 
dC;? At 

uj+‘=uj(l-c~12c:(t,))+~ c;n2c~(tj)-c,n c,(t,)+,T It n >I u;,, 

+; c~n2c;(tj)+c,n C,(t,)+%? [ ( )I q-1. (A1.7) 

The stability region is 

Cd G l/,~~$ IC,(t)l. (AM) 
. . 

(Al.l) 
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3. Function of Space: s = C,C,(x) 

(a) First order: 

uj,+ 1 = (1 - 2C~dV~(X,)) vi, 

+ c;i:c:(x,)-+k,(xJ l-&At2 i ( >I u;+l 

+ c;n’c:(x,) + 
[ 

$h,(x,) l-C&S 
( )I vi,_,. 

The stability region is 

C,;1~1/(2.max(C,(x)l). 

(b) Second order: 

C,At dC 1 -T$ 
!I 

TJ;,, 

+ (I- r42c;c;(x,)) uj, 

+; n*c;C:(x,) + ICoC,(x,) 
[ 

C,, At dC, l--- 
2 dx 

uj 
n 

The stability region is 

CO1 d l/max IC,(x)[. 

APPENDIX 2. 
SEMI-DISCRETIZED SCHEMES AND NUMERICAL SOLUTIONS 

The semi-discretized schemes considered are 

A”,. = -C,(x) C,(t) E.;-y, 

22. = C,(x) C,(t) 
j5”-6E.+37.+2g.-’ 

6dx ’ 

and 

23. = C,(x) C,(t) 
E.‘-@.+8p’-p2 

12Ax ’ 

-1’ 

(A1.30) 

(A1.11) 

(A1.12) 

(A2.1) 

(A2.2) 

(A2.3) 

where ?: is the identity operator and 8. the shift operator. As defined, A”,. is first 
order, J2. second order, and 2,. third order. 
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Let Uhl(x,, t), U&x,, t), and uh3(x,, t) be the numerical approximations at 
x = x, with respect to the schemes A r., AZ., and J3., respectively. Then at t = T, the 
error is computed as 

@)(x,)I = 1 U”‘(x,, T) - Ug’(x,, T)I for i= 1, 2, 3 (A2.4) 

where j = 1 indicates the continuous wave, and j = 3 the discontinuous one. 
We give the numerical approximations for the following examples. 

Case 1. The numerical continuous wave in the first problem: 

Uii)(x,, t) = sin x, - CO t 

4C,t . kndx knx, - - sm - 
3Ax 2 

xcos- 

(A2.5) 

(A2.6) 

U$(x,, t) = sin knx, - g (sin kn Ax)(4 - cos kn; AX)]. (A2.7) 

Case 2. The numerical discontinuous wave in the second problem: 

/ 

2k+l 

Lq-y(x,, t)=++& N’y cos2Nz 

k= --N/2 ‘.j,, 2k+l ~ 
2N 

Cot2 . 2k+l 
--nn--sin -n 

2Ax ( )I( N ’ (A.2.8) 

i 

2k+l 

X 
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xcos(F7c)(3+2sin2(y7c))] 

2k+~nn*sin 
N 3 Ax 

xcos (~rc)(3+2sin’(~rc)) 

2k+l 
cos--wn 

. 2k+l 
sm2N71 

(A2.9J 
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